Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

MCA NIMCET Previous Year Questions (PYQs)

MCA NIMCET Limit PYQ



MCA NIMCET PYQ
$\lim _{{x}\rightarrow1}\frac{{x}^4-1}{x-1}=\lim _{{x}\rightarrow k}\frac{{x}^3-{k}^2}{{x}^2-{k}^2}=$, then find k





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2023 PYQ

Solution

Quick DL Method Solution

Given:

\[ \lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \lim_{x \to k} \frac{x^3 - k^2}{x^2 - k^2} \]

LHS using derivative:

\[ \lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \left.\frac{d}{dx}(x^4)\right|_{x=1} = 4x^3|_{x=1} = 4 \]

RHS using DL logic:

\[ \lim_{x \to k} \frac{x^3 - k^2}{x^2 - k^2} \approx \frac{3k^2(x - k)}{2k(x - k)} = \frac{3k}{2} \]

Equating both sides:

\[ \frac{3k}{2} = 4 \Rightarrow k = \frac{8}{3} \]

\[ \boxed{k = \frac{8}{3}} \]


MCA NIMCET PYQ
Let $f(x)=\frac{x^2-1}{|x|-1}$. Then the value of $lim_{x\to-1} f(x)$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2023 PYQ

Solution



MCA NIMCET PYQ
The value of the limit $$\lim _{{x}\rightarrow0}\Bigg{(}\frac{{1}^x+{2}^x+{3}^x+{4}^x}{4}{\Bigg{)}}^{1/x}$$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2024 PYQ

Solution


MCA NIMCET PYQ
Which of the following is NOT true?





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2022 PYQ

Solution


MCA NIMCET PYQ
For $a\in R$ (the set of al real numbers), $a \ne 1$, $\lim _{{n}\rightarrow\infty}\frac{({1}^a+{2}^a+{\ldots+{n}^a})}{{(n+1)}^{a-1}\lbrack(na+1)(na+b)\ldots(na+n)\rbrack}=\frac{1}{60}$ . Then one of the value of $a$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2022 PYQ

Solution


MCA NIMCET PYQ
The value of ${{Lt}}_{x\rightarrow0}\frac{{e}^x-{e}^{-x}-2x}{1-\cos x}$ is equal to 





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2024 PYQ

Solution

Evaluate: $$\lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{1 - \cos x}$$

Step 1: Apply L'Hôpital's Rule (since it's 0/0):

First derivative: $$\frac{e^x + e^{-x} - 2}{\sin x}$$

Still 0/0 → Apply L'Hôpital's Rule again: $$\frac{e^x - e^{-x}}{\cos x}$$

Now, $$\lim_{x \to 0} \frac{1 - 1}{1} = 0$$

Final Answer: $$\boxed{0}$$


MCA NIMCET PYQ
$\lim_{x\to \infty} (\frac{x+7}{x+2})^{x+5}$ equal to





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2021 PYQ

Solution


MCA NIMCET PYQ
Let f(x) be a polynomial of degree four, having extreme value at x = 1 and x = 2. If $\lim _{{x}\rightarrow0}[1+\frac{f(x)}{{x}^2}]=3$, then f(2) is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2017 PYQ

Solution

Given it has extremum values at x=1 and x=2
⇒f′(1)=0  and  f′(2)=0
Given f(x) is a fourth degree polynomial 
Let  $f(x)=a{x}^4+b{x}^3+c{x}^2+dx+e$
Given 
$\lim _{{x}\rightarrow0}[1+\frac{f(x)}{{x}^2}]=3$
$\lim _{{x}\rightarrow0}\lbrack1+\frac{a{x}^4+b{x}^3+c{x}^2+\mathrm{d}x+e}{{x}^2}\rbrack=3$
$\lim _{{x}\rightarrow0}\lbrack1+a{x}^2+bx+c+\frac{d}{x}+\frac{e}{{x}^2}\rbrack=3$
For limit to have finite value, value of 'd' and 'e' must be 0
⇒d=0  & e=0
Substituting x=0 in limit 
⇒ c+1=3
⇒ c=2
$f^{\prime}(x)=4a{x}^3+3b{x}^2+2cx+d$
$x=1$ and $x=2$ are extreme values,
⇒$f^{\prime}(1)=0$ and $f^{\prime}(2)=0
⇒ $4a+3b+4=0$ and $32a+12b+8=0$ 
By solving these equations
we get, $a=\frac{1}{2}$ and $b=-2$
So,
$f(x)=\frac{x^{4}}{2}-2x^{3}+2x^{2}$
⇒$f(x)=x^{2}(\frac{x^{2}}{2}-2x+2)$
⇒$f(2)=2^{2}(2-4+2)$
⇒$f(2)=0$


MCA NIMCET PYQ
The value of $\lim_{x\to a} \frac{\sqrt{a+2x}-\sqrt{3x}}{\sqrt{3a+x}-2\sqrt{x}}$





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2015 PYQ

Solution


MCA NIMCET PYQ





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2017 PYQ

Solution

Function is the form of  therefore using by L'Hospital rule
Again apply L'Hospital Rule,
Putting x = 0, we get 
 


MCA NIMCET PYQ
Find 





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2020 PYQ

Solution


MCA NIMCET PYQ
If $f(x)=\lim _{{x}\rightarrow0}\, \frac{{6}^x-{3}^x-{2}^x+1}{\log _e9(1-\cos x)}$ is a real number then $\lim _{{x}\rightarrow0}\, f(x)$





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2023 PYQ

Solution



MCA NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

MCA NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...